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Abstract Wave generation due to the steady translational motion of an oscillatory disturbance in a two-layer
density-stratified fluid is studied. In the context of linearized two- and three-dimensional potential flow, explicit
expressions for the Green functions are derived and limiting cases discussed. Of special interest are the waves in
the far field. The number and amplitudes of these waves depend on the characteristics of the disturbance (location,
speed and oscillation frequency) and the ocean (stratified layer density and depth ratios). These dependencies are
elucidated in concrete examples. An interesting finding, for example, is that, for constant frequency, there are crit-
ical speeds (as functions of density and depth ratios) at which the specific amplitudes attain maxima. For the more
general problem and as an independent validation, an efficient numerical scheme for the problem based on a spectral
method is developed. Direct simulation results compare well with analytical predictions in the near- and far-fields
and offer a powerful tool for practical problems with general time-dependent motions of one or more bodies.

Keywords Green function · Moving and oscillating disturbance · Spectral method · Two-layer fluid

1 Introduction

The linear problem of wave generation and propagation by a submerged disturbance, when it translates with a
constant speed while its strength is sinusoidally oscillating in time, is considered analytically and numerically in
a two-layer density-stratified fluid. Understanding of waves due to the motion of a submerged body has practical
applications ranging from non-acoustic detection of underwater vehicles [1], to seakeeping and wave-load calcu-
lations on moored/floating offshore structures. In stratified waters, and particularly in littoral zones, it can help
understand generation of internal gravity waves. In the inverse problem, density stratification hence ocean-body
composition can be found from the wake pattern behind a moving object [2,3]. This work is motivated by the need
for a better understanding of wakes of heavy ocean vehicles in strong stratified waters.

In a homogeneous fluid, the linear two-dimensional problem of far-field waves created by an oscillating and
translating disturbance was studied in [4] (see also [5]), followed by others who included effects of nonlinearity
and considered the asymptotic behaviors near the critical frequency (see e.g. [6–9]).
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For a two-layer density-stratified fluid, the steady flow past a submerged obstacle is well studied (see e.g. the
monograph by Baines [10] where the rigid-lid assumption is used). In the presence of a free surface and deep lower
layer, Voitsenya [11] derived the three-dimensional potential for a pulsating source and a vortex. For the same setup,
Hudimac [12] showed that a moving ship generates an internal-wave system similar to the surface Kelvin waves.
For speeds less than a critical speed, the internal ship wave consists of both transverse and divergent waves, while
above that critical speed, only divergent waves persist [13,14].

For finite stratified layer depths, Yeung and Nguyen [15] obtained the Green function for a constant-strength
source moving with steady speed in the upper layer. These results are extended, theoretically and experimentally,
in [1] to a dipole located in the lower layer. For a disturbance near the interface of two deep-layer fluids (i.e., a
system of two semi-infinite fluids), Lu and Chwang [16] derived analytical expressions for the three-dimensional
interfacial waves due to a fundamental singularity.

The present work is motivated by the possibility of observing surface and internal disturbance associated with
ships and submarines in strong stratified waters such as in warm littoral zones. We consider the general two- and
three-dimensional problem of wave generation by an oscillatory source translating with steady forward speed in
a two-layer density-stratified fluid. Depending on the Froude number and dimensionless frequency of the motion,
and the ratios of depths and densities of the two layers, up to eight distinct far-field free waves can be obtained and
for sufficiently small forward speed two of these can advance ahead of the source.

The formulation of the problem is given in Sect. 2, followed by a kinematic analysis based on the dispersion
relation that provides the wavenumber and frequency of the far-field waves. To obtain the amplitudes of these waves
and information in the near field, we solve the boundary-value problem for the Green function (Sect. 3) in two
(Sect. 3.1, 3.3) and three dimensions (Appendix). The Green functions differ depending on whether the source is
located in the upper (Sect. 3.1) or lower fluid (Sect. 3.3), and their dependencies on the physical parameters are
discussed (Sect. 3.4). In the limit of deep fluid layers, the Green function simplifies substantially and each of the
wave components can be worked out explicitly (Sect. 3.2). In Sect. 4, we develop an efficient numerical scheme
for the general problem of possibly multiple disturbances with time-varying speeds and motion frequencies. The
algorithm is the extension of a high-order spectral method originally developed to simulate nonlinear gravity wave–
wave interactions in a single fluid layer [17]. The numerical method provides independent validation of the earlier
analysis. This is performed in Sect. 4.2 for the near- and far-field waves.

2 Problem formulation

We consider a two-layer density-stratified fluid where the upper and lower fluid layers have, respectively, mean
depths hu and h�, and fluid densities ρu and ρ� (density ratio R ≡ ρu/ρ�). Hereafter, subscript u/� denotes quantities
associated with the upper/lower fluid layers. In a Cartesian coordinate system with the x , y-axes on the mean free
surface and the z-axis positive upward, the two-layer fluid rests on a flat horizontal bottom z = −hu − h� and has
surface and interface elevations ηu(x, y, t), and η�(x, y, t), respectively.

We consider a point source with pulsating strength m = m0 cosω0t , moving with forward speed U in the
x-direction, located at a fixed (mean) depth z = z0. We assume that the fluids in both layers are homogeneous,
incompressible, immiscible and inviscid so that the fluid motion is irrotational. The effect of surface tension is
neglected. The flow in each layer is described by a velocity potential, φu(x, y, z, t) and φ�(x, y, z, t). In a stationary
frame of reference the linearized governing equations are:

∇2φu = m0 δ(x − x0 − Ut, 0, z − z0) cosω0t, −hu < z < 0, (2.1a)

∇2φ� = 0, −hu − h� < z < −hu, (2.1b)

ηu,t = φu,z, z = 0, (2.1c)

φu,t + gηu = 0, z = 0, (2.1d)

η�,t = φu,z, z = −hu, (2.1e)
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Oscillating and translating disturbance in a two-layer fluid 181

η�,t = φ�,z, z = −hu, (2.1f)

R(φu,t + gη�) = (φ�,t + gη�), z = −hu, (2.1g)

φ�,z = 0, z = −hu − h�, (2.1h)

where δ is the Dirac delta function, g the gravitational acceleration, and x = x0 + Ut the position of the moving
source assumed to be in the upper fluid layer (z0 > −hu). The boundary-value problem for φu/�, ηu/� is complete
with the imposition of an appropriate radiation condition, in this case a physical requirement that only waves with
group velocity greater than (less than) the forward speed can be present far up (down) stream of the disturbance. If
the source is located in the lower layer, the right-hand sides of (2.1) and (2.1b) are exchanged, but the remaining
discussion in this section is unaffected.

Let us introduce the following normalizations:

t∗ = ω0t, x∗, z∗, z∗
0, h∗ = x, z, z0, hu

H
, ϕ∗

u,� = φu,�

φ0
, m∗

0 = m0 H2

φ0
, k∗ = k H, ω∗ = ω

ω0
, (2.2)

where asterisks indicate dimensionless variables, H = hu + h�, and φ0 = gA/ω0 scales the velocity potential
where A is the characteristic wave amplitude. In a frame of reference moving with the source the dimensionless
governing equations for velocity potentials, dropping all asterisks, are:

∇2ϕu = m0δ(x − x0, 0, z − z0) cos t, −h < z < 0, (2.3a)

∇2ϕ� = 0, −1 < z < −h, (2.3b)

τ 2ϕu,t t − 2τFϕu,xt + F2ϕu,xx + Fϕu,z = 0, z = 0, (2.3c)

ϕu,z = ϕ�,z, z = −h (2.3d)

R(τ 2ϕu,t t − 2τFϕu,xt + F2ϕu,xx + Fϕu,z) = τ 2ϕ�,t t − 2τFϕ�,xt + F2ϕ�,xx + Fϕ�,z, z = −h, (2.3e)

ϕ�,z = 0, z = −1, (2.3f)

where τ = Uω0/g and F = U 2/gH . Before deriving the solution to (2.3), some insights can be obtained from
the dispersion relation. The solution for a free plane propagating wave, in a space-fixed coordinate system, in a
two-layer fluid can be written as (see [18])

ηu = a ei(k·x−ωt), (2.4a)

η� = b ei(k·x−ωt), (2.4b)

ϕu = −i(A cosh kz + B sinh kz) ei(k·x−ωt), (2.4c)

ϕ� = −iC cosh k(z + 1) ei(k·x−ωt), (2.4d)

where k = |k|. Coefficients a and b (both non-dimensionalized by A) are amplitudes of surface and interfacial
elevations, and are related by

b

a
= cosh kh − αk

ω2 sinh kh. (2.5)

where α ≡ F/τ 2. In terms of a and b, the coefficients A, B and C are given by

A = a

ω
, B = ωa

αk
, C = ωb

αk sinh k(1 − h)
. (2.6)

In (2.4a), the pair (k, ω) satisfy the dispersion relation:

D(ω, k) = ω4[R + coth kh coth k(1 − h)] − αω2k[coth kh + coth k(1 − h)] + α2k2(1 − R) = 0. (2.7)

It is easy to see that, for a given wavenumber k > 0, Eq. 2.7 has four solutions: ±ωs(k),±ωi (k), with ωs > ωi > 0
[19], where ±ωs(k) and ±ωi (k) are denoted as the surface-mode and internal-mode waves, respectively [20].

In a frame of reference moving with the source, the only possible far-field free waves are those whose encounter
frequencies are the same as the frequency of oscillation of the disturbance. The encounter frequency of a free wave
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Fig. 1 Schematic of the dispersion relationship for far-field waves generated by a moving and oscillating disturbance in a two-layer
density-stratified fluid. The figure also shows the numbering convention for these waves. Frequency lines ω = ±1 + Fk/τ : — · · —,
can have up to NW = 8 intersections with the internal (- - -) and surface (——) mode solutions of the dispersion relation (2.7)

is defined by ωen = ω ± Uk where (k, ω) are the wavenumber and frequency of the free wave, U is speed of the
source, and the positive/negative sign is taken if the source moves in the opposite/same direction as the free wave;
see for example [21]. Therefore, the far-field waves of a translating/oscillating source correspond to the solutions
to the dispersion relation (2.7) by letting ω=ω0 ± kU or equivalently:

D(±1 + Fk/τ, k) = 0. (2.8)

Roots of (2.8) are at the intersections of the surface and internal mode branches of stationary frame dispersion
relation (2.7) (Fig. 1, solid and dashed curves, respectively) with the frequency lines, i.e., ω(k) = ±1 + Fk/τ
(Fig. 1, dash-dot lines). Figure 1 also defines the numbering convention for these roots where surface mode waves
are denoted by wavenumbers k1, k2, k3, k4 (to be consistent with one-layer convention, (see e.g. [9]), and internal
mode waves are denoted by wavenumbers k5, k6, k7 and k8.

When the encounter-frequency line becomes tangent to one of the dispersion relation branches, two of the roots
coalesce, and the critical frequencies at which this occurs are labeled by τcr,s or τcr,i according to whether it is the
ωs(k) or ωi (k) branch of the dispersion relation. Generally, we have for τ > τcr,s , NW = 4; for τcr,i < τ < τcr,s ,
NW = 6; and for τ < τcr,i , NW = 8 far-field waves associated with the oscillating and translating disturbance.

In general, waves associated with kp, p = 3, 4, 7, 8, (the “p waves”) are always present regardless of the physical
parameters; however, those associated with kq , q = 1, 2, 5, 6, (the “q” waves) may not exist depending on the value
of τcr. Qualitatively, p/q waves have smaller/greater phase speed compared to U .

The dimensionless critical frequencies τcr,s , τcr,i are functions of R, F and h and can be found numerically.
Figure 2 shows the dependence of τcr,s , τcr,i on F and h for R= 0.2 and 0.95. It is seen that τcr,s has a weak
dependence on h and R while τcr,i has a relatively stronger dependence.

We note that no real surface/interface τcr can be found if

F >
1

2

(
1 ± √

1 − 4h(1 − h)(1 − R)
)

≡ Fcr, (2.9)

where +/− refers to the surface/internal mode. Figure 3 shows the variation of Fcr with R and h. For R close
to unity, the critical Froude number associated with the surface mode, Fcr,s ≈ 1, and that associated with the
internal mode, Fcr,s ≈ 0. Thus in a realistic ocean where 1 − R is small, no internal wave propagates ahead of

123



Oscillating and translating disturbance in a two-layer fluid 183
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Fig. 2 Critical dimensionless frequencies τcr,s , τcr,i as a functions of depth ratio h for different Froude numbers F

the disturbance unless F is comparably small. For given R, the maximum range of F for upstream waves occurs
at h = 0.5 where Fcr are extremal. It is noted that in the limit of 1 − R → 0 all classical results for waves of an
oscillating/translating source in a homogeneous fluid (e.g. [4]) are retrieved.

In the limiting case of deep layers, kh, k(1 − h) � 1, the far-field wavenumbers in two dimensions can be
obtained in a closed form. In this limit, (2.7) reduces to:

ω2
s = αk, ω2

i = αkϑ (2.10)

where ϑ = (1 − R)/(1 + R). The resultant waves at infinity are solutions of the following eight equations

± 1 + Fk/τ = ±√
αk, ±1 + Fk/τ = ±√

αkϑ . (2.11)

Depending on the values of τ and R, and the sign before unity, each of these eight equations can have either two
or zero real roots. The first equation of (2.11) is for surface-mode waves and is the same as that for homogeneous
fluid. The second equation of (2.11) is for internal-mode waves where the effect of gravitational acceleration is
effectively reduced by the factor of ϑ . The roots to (2.11) are:

k1,2 = 1

2ατ 2

[
1 − 2τ ± (1 − 4τ)

1
2

]
, (2.12)

k3,4 = 1

2ατ 2

[
1 + 2τ ± (1 + 4τ)

1
2

]
, (2.13)
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Fig. 3 Critical Froude
numbers Fcr,s , Fcr,i as
functions of R and h

k5,6 = 1

2αϑτ 2
�

[
1 − 2τ� ± (1 − 4τ�)

1
2

]
, (2.14)

k7,8 = 1

2αϑτ 2
�

[
1 + 2τ� ± (1 + 4τ�)

1
2

]
, (2.15)

where τ� = τ/ϑ . It is clear that: NW = 4 for τ>1/4; NW = 6 for 0.25ϑ<τ<1/4; and NW = 8 for τ<0.25ϑ .
In a stationary frame, the surface/internal wave associated with k4/k8 propagates backward (negative phase and

group speed C p,Cg < 0); the other waves propagate forward (C p,Cg > 0) with the k2/k6 waves, if they exist, mov-
ing ahead of the disturbance (Cg >U ), and the k1/k5 and k3/k7 waves trailing behind the disturbance (Cg <U ).
The difference between the two latter pairs of waves is that C p >U for k1/k5, if they exist, and C p <U for k3, k7.

3 Green function

The kinematic analysis of the preceding section gives wavenumbers of the waves that appear at the far field of
an oscillating translating disturbance in a two-layer density-stratified fluid. To determine the amplitudes of these
waves and also surface and interface elevations in the near field of the disturbance, the boundary-value problem
needs to be solved analytically. In this section, we obtain the Green function in two dimensions for the veloc-
ity potential associated with a steadily translating point source of sinusoidally oscillating strength in a two-layer
density-stratified fluid. For the source located in the upper layer we present the general form of the two-dimensional
Green function, and study the limiting case of deep layers where the expressions are simplified considerably. The
corresponding Green function for the source in the lower layer is given in Sect. 3.3. Extension of the these results
to three dimensions is straightforward and the final results are given in the Appendix.

3.1 Two-dimensional source in the upper layer

We seek a steady solution to the governing equation (2.3) in the frame of reference moving with the source. Let us
assume:

ϕu(x, z, t) = Re{m0 φu(x, z) eit }, ϕ�(x, z, t) = Re{m0 φ�(x, z) eit }, (3.16)

and consider a solution of the following form:

φu = log r

2π
+ log r2

2π
+ Hu(x, z), φ� = H�(x, z), (3.17)
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Oscillating and translating disturbance in a two-layer fluid 185

where

r2 = x2 + (z − z0)
2, r2

2 = x2 + (z + z0 + 2h)2. (3.18)

To solve for Hu , H�, we apply a Fourier transform in x (see [5]). The function log(r) in two dimensions does
not have a Fourier transform (see [22] for a variant definition using Laplace equation), however, we can write it in
an integral form:

log
√

x2 + a2 = −
∞∫

0

e−ka cos kx − cos k

k
dk. (3.19)

The second term in the numerator is not a function of x , z. However, it enters the boundary-value problem
through ϕu/�,t t (Eq. 2.3c, e). In [23] the potential of the virtual singularity is subtracted from the real singularity
(i.e., log r − log r2) to avoid the new term under the integral. Debnath [24] used an expression similar to ours without
the constant term (see the definition of M1 after Eq. 34 in his paper and compare with his Eq. 22) which strictly
does not admit an inverse Fourier transform.

The integral form of the logarithmic function being available, the solution to the boundary-value problem (2.3)
can be written in terms of inverse Fourier integrals:

φu = log r

2π
+ log r2

2π
+

∞∫

0

[
(A+ cosh kz + B+ sinh kz)

eikx

2

+(A− cosh kz + B− sinh kz)
e−ikx

2
− cos k

πk

]
dk, (3.20)

φ� =
∞∫

0

[
C+ cosh k(z + 1)

eikx

2
+ C− cosh k(z + 1)

e−ikx

2

]
dk. (3.21)

Upon substitution of the boundary conditions, the coefficients A±, B± and C± can be found:

X± = α X̂±

λ±4 − (ω2
s + ω2

i )λ
±2 + ω2

sω
2
i

, (3.22)

where X can be either of A, B or C with

Â± = β λ±4 + αk (−Rsl γ + cl cuβ + Rsl suβ − slβ cu + sl Rβ cu) λ±2

sl su R + cu cl
+ α2k2sl cuβ (−1 + R)

sl su R + cu cl
, (3.23)

B̂± = (sl cu Rβ + β cl su − Rsl γ ) λ±4

sl su R + cu cl
+ αkβ (sl cu R + cl su − sl su + sl su R) λ±2

sl su R + cu cl

+α
2k2β sl su (−1 + R)

sl su R + cu cl
, (3.24)

Ĉ± = R (
cu2β − cu γ − su2β

)
λ±4

cu cl + sl su R + Rαk
(−su2β + cu2β + su γ

)
λ±2

cu cl + sl su R , (3.25)

where

λ± = 1 ∓ Fk/τ, β = cosh k(z0 + h)

π αk exp(kh)
, γ = e−k(z0+h)

παk
su ≡ sinh(kh), cu ≡ cosh(kh),

sl ≡ sinh[k(1 − h)], cl ≡ cosh[k(1 − h)], (3.26)

and the ωs,i are surface-mode and internal-mode solutions to the dispersion relation (2.7) for a given k.
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From (2.1c) and (2.1e), the surface and interface elevations are obtained:

ηu = ϕu,t − F
τ
ϕu,x , z = 0, (3.27)

η� = R(ϕu,t − F/τ ϕu,x )− (ϕ�,t − F/τ ϕ�,x )
(1 − R) , z = −h. (3.28)

For numerical evaluation of (3.20) and (3.21), the integrals can be transformed into Cauchy principal-value
integrals. To do this, one may finally express (3.20) and (3.21) in the expanded form:

φu = log r

2π
+ log r2

2π
+

∞∫

0

[
( Â+ cosh kz + B̂+ sinh kz)

2 G+ eikx + ( Â− cosh kz + B̂− sinh kz)

2 G− e−ikx − cos k

πk

]
dk,

(3.29)

φ� =
∞∫

0

[
Ĉ+

2 G+ cosh k(z + 1) eikx + Ĉ−

2 G− cosh k(z + 1) e−ikx

]
dk, (3.30)

where

G±/α = λ±4 − (ω2
s + ω2

i )λ
±2 + ω2

sω
2
i . (3.31)

Here G+ can have a maximum number of four real roots while G− always has four real roots. Assuming all eight
real roots exist, one may finally express (3.20) and (3.21) as:

φu = log r

2π
+ log r2

2π
+

∑
k=k1,k2,k5,k6

(−1)wiπ
( Â+ cosh kz + B̂+ sinh kz)

2 I+ eikx

+
∑

k=k3,k4,k7,k8

(−1)wiπ
( Â− cosh kz + B̂− sinh kz)

2 I− e−ikx

+ PV

∞∫

0

[
( Â+ cosh kz + B̂+ sinh kz)

2 G+ eikx + ( Â− cosh kz + B̂− sinh kz)

2 G− e−ikx − cos k

πk

]
dk, (3.32)

φ� =
∑

k=k1,k2,k5,k6

(−1)wiπ
Ĉ+

2 I+ cosh k(z + 1) eikx +
∑

k=k3,k4,k7,k8

(−1)wiπ
Ĉ−

2 I− cosh k(z + 1) e−ikx

+ PV

∞∫

0

[
Ĉ+

2 G+ cosh k(z + 1) eikx + Ĉ−

2 G− cosh k(z + 1) e−ikx

]
dk, (3.33)

where

I±/α = d

dk

{
λ±4 − (ω2

s + ω2
i )λ

±2 + ω2
sω

2
i

}
(3.34)

and w = 1 for k = k2, k6, and w = 2 otherwise. If any of k1, k2, k5, k6 is not real (they disappear as “pairs”), the
corresponding term in the sum is skipped.

The far-field amplitudes can be found by contour integration of (3.20) and (3.21). About each singularity, how-
ever, there exist two choices of indentation of the path with each leading to a different solution. Careful consideration
of these possibilities for each singularity shows that one of them is associated with a wave coming from infinity,
which is in contradiction with the radiation condition (scattering energy of a source must flow toward infinity).
Thus, this solution should not be chosen. Note that waves of a moving source can propagate both fore and aft of the
disturbance as long as they move away from the source. This can be better understood by visualizing an oscillating
but not translating source which sends out similar waves in both directions. Now, if the source moves slower than
these waves, it will always stay behind fore waves.
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Oscillating and translating disturbance in a two-layer fluid 187

In this problem, it is found that to satisfy the radiation condition of outgoing waves at infinity, the contour inte-
gration along the real k-axis must be indented below the poles for k2, k6 (if they exist) and above those associated
with all the other wavenumbers. After some algebra, the final expressions for the far-field amplitudes are:

φ∞
u = π

Â+ cosh kz + B̂+ sinh kz

2I+ , φ∞
� = π

Ĉ+ cosh k(z + 1)

2I+ , (3.35)

for k = k1, k2, k5, k6, and,

φ∞
u = π

Â− cosh kz + B̂− sinh kz

2I− , φ∞
� = π

Ĉ− cosh k(z + 1)

2I− , (3.36)

for k = k3, k4, k7, k8.
Equivalently, as an alternative approach and to avoid encountering principal-value integrations, one can intro-

duce a fictitious dissipation term to the governing equation (2.3) [18]. By the means of this damping term, the path
integral will be off the x-axis and does not encounter any singularity. By setting this fictitious damping equal to
zero, the potential solution is obtained ([15], for example). In fact it can be shown that the solution for a general
accelerating/variable-strength source in a two-layer fluid (not presented here) in the limit of long time, steady motion
and no oscillation asymptotically tends to the solution of [15].

3.2 Deep-layers limiting case

When both layers are deep, the Green function can be reduced to independent integrals in Fourier space. These
reduced expressions are two-layer counterparts of the well known deep-water homogeneous-fluid Green function
(see [8] for example).

The Green-function expressions depend on the value of τ relative to τcr,i , τcr,s . For τ<τcr,i , NW = 8 distinct
waves exist. After some algebra, the final form of the solution can be expressed as:

φu = 1

2π
log r + 1

2π
log r2 +

∞∫

0

⎡
⎣ Â+ cosh kz + B̂+ sinh kz

2 τ 4

∑
q=1,2,5,6

aq

k − kq
eikx

+ Â− cosh kz + B̂− sinh kz

2 τ 4

∑
q=3,4,7,8

aq

k − kq
e−ikx − cos k

πk

⎤
⎦ dk, (3.37)

φ� =
∞∫

0

⎡
⎣ Ĉ+ eikx

2τ 4

∑
q=1,2,5,6

aq

k − kq
+ Ĉ− e−ikx

2τ 4

∑
q=3,4,7,8

aq

k − kq

⎤
⎦ cosh k(z + 1) dk, (3.38)

where

aq =
∏

j={1,2,5,6}−q

1

α3 · 1

kq − k j
for q = 1, 2, 5, 6; (3.39)

aq =
∏

j={3,4,7,8}−q

1

α3 · 1

kq − k j
for q = 3, 4, 7, 8. (3.40)

The integrals contain simple poles at k = k1, . . . , k8. It can be shown that the only valid (i.e., consistent with
radiation condition) solution of this integral is obtained when the integration contour is indented below k2, k6 and
above the singularities corresponding to the other wavenumbers.
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For τcr,i < τ < τcr,s , NW = 6, and we have

φu = 1

2π
log r + 1

2π
log r2 +

∞∫

0

⎡
⎣ Â+ cosh kz + B̂+ sinh kz

2 τ 4

∑
q=1,2

aq

k − kq
eikx

+ Â− cosh kz + B̂− sinh kz

2 τ 4

∑
q=3,4,7,8

aq

k − kq
e−ikx − cos k

πk

⎤
⎦ dk, (3.41)

φ� =
∞∫

0

⎡
⎣ Ĉ+ eikx

2τ 4

∑
q=1,2

aq

k − kq
+ Ĉ− e−ikx

2τ 4

∑
q=3,4,7,8

aq

k − kq

⎤
⎦ cosh k(z + 1) dk, (3.42)

where now

a1 = 1

α
· τ 2

λ2(k1)− ω2
i (k1)

· 1

k1 − k2
, (3.43)

a2 = 1

α
· τ 2

λ2(k2)− ω2
i (k2)

· 1

k2 − k1
(3.44)

and

aq =
∏

j={3,4,7,8}−q

1

α3 · 1

kq − k j
for q = 3, 4, 7, 8 (3.45)

and the contour integrations for (3.41) and (3.42) (and below) must be treated similarly to satisfy the radiation
condition.

Finally, for τ > τcr,s , NW = 4, and we have

φu = 1

2π
log r + 1

2π
log r2 +

∞∫

0

⎧⎨
⎩

Â− cosh kz + B̂− sinh kz

2 τ 4

∑
q=3,4,7,8

aq

k − kq
e−ikx − cos k

πk

⎫⎬
⎭ dk, (3.46)

φ� =
∞∫

0

Ĉ− e−ikx

2τ 4

∑
q=3,4,7,8

aq

k − kq
cosh k(z + 1) dk, (3.47)

where

aq =
∏

j={3,4,7,8}−q

1

α3 · 1

kq − k j
for q = 3, 4, 7, 8. (3.48)

3.3 Source in the lower layer

For the source point in the lower layer, the derivation is quite similar and the details are omitted. Here we provide
the final expressions for the Green functions:

φu =
∞∫

0

[
(A+ cosh kz + B+ sinh kz)

eikx

2
+ (A− cosh kz + B− sinh kz)

e−ikx

2

]
dk, (3.49)

φ� = log r

2π
+ log r3

2π
+

∞∫

0

[
C+ cosh k(z + 1)

eikx

2
+ C− cosh k(z + 1)

e−ikx

2
− cos k

πk

]
dk, (3.50)

where r2
3 ≡ x2 + (2+ z + z0)

2. By applying the boundary conditions, the coefficients A±, B± and C± are obtained:

X± = α X̂±

λ±4 − (ω2
s + ω2

i )λ
±2 + ω2

sω
2
i

, (3.51)
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Fig. 4 Far-field wave amplitudes au,n , a�,n , as functions of R for F = 0.03, τ = 0.1, z0 = −0.02, h = 0.5. a For au,n : au,1 —— ;
au,2 - - - ; au,3 – · – ; and au,4 · · · . b for a�,n : a�,5 —— ; a�,6 - - -; a�,7 – · – ; and a�,8 · · ·

where X is either of A, B or C and

Â± = αkλ±2
β (sl + cl)

sl Rsu + cl cu
, B̂± = λ±4

β (sl + cl)

sl su R + cl cu
, (3.52)

Ĉ± = −β (su R − cu) λ±4

sl su R + cl cu
+ β αk (−su + cu) λ±2

sl su R + cl cu
+ β α2k2su (R − 1)

sl su R + cl cu
, (3.53)

where now

β = cosh k(z0 + 1)

π α k ek(1−h)
. (3.54)

3.4 Discussion

The Green functions we obtained provide the solution everywhere in the flow. Of special interest are the wave
amplitudes in the far field. These wave amplitudes, in general au,n , a�,n , n = 1, . . . , 8, on the upper (surface), lower
(interfacial) layers, depend on the characteristics of the moving oscillating source, τ , F and z0, as well as those of
the ocean environment, h and R.

Figures 4a and b plot au,n , n = 1, 2, 3, 4, and a�,n , n = 5, 6, 7, 8, respectively, for the surface and internal
mode waves as a function of the density ratio R. The other parameters used are F = 0.032, τ = 0.1, h = 0.5, and
z0 = −0.02. With the source in the upper layer in this case, the dependence on R of au,n is relatively weak, while
a�,n generally increase with R (with a rate that depends on the specific mode n). This is expected because, relative to
the density of the lower fluid, the momentum introduced by the source in the upper layer increases as R increases.
For other parameters fixed, τcr,i decreases as R increases. Beyond a certain value of R (R= 0.4 in this case),
τcr,i < τ , NW decreases from 8 to 6, and the amplitudes associated with the two modes that are eliminated blow
up (corresponding to their group velocity approaching to U ). Based on Fig. 4, hereafter, we focus on two values of
density ratio, R= 0.2 and 0.95; only the latter value, of course, corresponds to conditions in the physical ocean.

Figures 5a–d show the dependence of an on F for R = 0.2, 0.95. With F varying, an are now non-dimensional-
ized by g/(mω0). Other physical parameters are τ = 0.1, h = 0.5, and z0 = −0.02. Generally, as F increases, there
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Fig. 5 Far-field wave amplitudes au,n , a�,n , as functions of F for τ = 0.1, z0 = −0.02, h = 0.5, and, a, b R = 0.2; c, d R = 0.95.
In Figs. 5 a, c for au,n : au,1 —— ; au,2 - - - ; au,3 – · – ; and au,4 · · · . In Figs. 5 b, d for a�,n : a�,5 —— ; a�,6 - - - ; a�,7 – · – ; and
a�,8 · · ·

are values F = Fmax, at which au,3 and a�,7 obtain maximum and then decay. If the range of F in Fig. 5 is extended,
we find that this is in fact the case for all p waves. Similar to previous figures, there are critical values Fcr, given
the other parameters, beyond which respective q waves disappear; with the general feature that the corresponding
amplitudes become unbounded as F approached these Fcr values. The magnitude of R affects the values of Fmax

and Fcr, with these values greater/smaller for the surface/internal mode wave amplitudes for larger R.
Dependence of an on τ and h is more uniform. For a source near the free surface as τ increases the ampli-

tudes of the p/q waves decrease/increase. If τ approaches τcr,s , τcr,i , the respective q wave amplitudes become
unbounded and disappear. In the limit τ → 0, i.e., a steady translating source, the wavenumbers associated
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with, respectively, au,1, au,3 and a�,5, a�,7 coincide and their amplitudes become equal. In this limit, the
wavenumbers associated with au,2, au,4 and a�,6, a�,8 go to zero but the amplitudes remain finite. As z0 decreases
towards the interface, a�,n does not change appreciably, while au,n decreases significantly. The main differ-
ence between R = 0.2 and R = 0.95 is that, for the latter, τcr,i = 0 and the a�,5 and a�,6 waves do not exist
(NW = 6). In fact, for F < 0.5, it can be shown from (2.9) that the maximum R for a�,5 and a�,6 waves to exist is
given by:

Rmax = 1 − F
h(1 − h)

(1 − F). (3.55)

A similar expression can be obtained for F >0.5.
In the ocean, h (for given total depth H ) can vary significantly due to the passage of long interfacial waves. In

littoral zones, the amplitude of these waves can be an appreciable fraction of H (see e.g. [25]). Again, if the source
is located near the free surface, then most of the variations in the far-field wave amplitudes occur for smaller h. As h
increases, au,n /a�,n generally increases/diminishes. These dependencies are more prominent for a�,n . In particular,
for small enough R, there is a critical depth ratio near which a�,5 and a�,6 go unbounded and below which they
disappear. For a more physically relevant case of weak stratification (1 −R 
 1), the resistance on the disturbance
due to wave generation generally decreases as h increases from small values. For a more detailed discussion the
reader is referred to [26].

Finally we consider the effect of z0 in Fig. 6. As expected, there is a sharp variation in wave amplitudes around
z0 ∼ −h especially for smaller R. As the location of the disturbance approaches the interface from below, an

(especially a�,n) increases markedly. As z0 crosses −h, an drops abruptly proportionate to the abrupt drop in the
density. As the disturbance approaches the free surface, a�,n decreases from its maximum value at z0 = −h, while
au,n increases (eventually becoming unbounded as z0 →0). The wave resistance on the disturbance as it crosses
the interface consequently follows a similar qualitative trend.

4 Direct numerical simulation

For the general problem involving possibly multiple bodies and arbitrary time-dependence in the motions, the
solution can be more generally and efficiently obtained by a direct numerical method. Here we present a highly
efficient numerical scheme based on spectral expansion of potentials (Sect. 4.1). The numerical method is general
for two- and three-dimensional problems and can be extended to account for nonlinear effects [27]. Here we focus
on the linearized two-dimensional problem.

4.1 Formulation of the spectral method

Consider the linearized governing equations (2.1) with a point source located in either the upper or lower layer.
For later convenience, we define ϕu = φu + φ̄u , ϕ� = φ� + φ̄�; where φ̄u, φ̄� represent the potential of the point
source in an unbounded homogeneous fluid, and, in the neighborhood of the interface, we define a new potential
ψ(x, z, t) ≡ φ�(x, z, t) − Rφu(x, z, t). In terms of these quantities, and in the frame of reference moving with
the disturbance, we can rewrite the kinematic and dynamic boundary conditions on the surface and interface in the
forms:

ηu,t = Uηu,x + φu,z + φ̄u,z, z = 0, (4.56a)

φu,t = Uφu,x − gηu − φ̄u,t , z = 0, (4.56b)

η�,t = Uη�,x + φu,z + φ̄u,z, z = −hu, (4.56c)

ψ,t = Uψ,x − gη�(1 − R)− (φ̄�,t − Rφ̄u,t ), z = −hu . (4.56d)

In the numerical simulation, the equations of (4.56) are used as evolution equations for ηu(x, t), φu(x, 0, t),
η�(x, t) and ψ(x,−hu, t), given the vertical surface velocity, φu,z(x, 0, t), and the vertical interface velocities,
φu,z(x,−hu, t) and φ�,z(x,−hu, t), which are obtained from the solution of the boundary-value problem.
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Fig. 6 Far-field wave amplitudes au,n , a�,n , as functions of z0 for F = 0.03, τ = 0.1, h = 0.5, and, a, b R = 0.2; c, d R = 0.95. In
Figs. a, c for au,n : au,1 —— ; au,2 - - - ; au,3 – · – ; and au,4 · · · . In Figs. b, d for a�,n : a�,5 —— ; a�,6 - - - ; a�,7 – · – ; and a�,8 · · ·

To find these velocities, we construct the solutions for φu and φ� in terms of Fourier basis functions:

φu(x, z, t) =
N−1∑

n=−N

{
An(t)

cosh[kn(z + hu)]
cosh(knhu)

+ Bn(t)
sinh(knz)

cosh(knhu)

}
eikn x , (4.57)

φ�(x, z, t) =
N−1∑

n=−N

Cn(t)
cosh[kn(z + hu + h�)]

cosh(knh�)
eikn x , (4.58)
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where kn = 2πn/L with L being the length of the computational domain, and An , Bn , and Cn are the complex
modal amplitudes. Clearly, φu and φ� in (4.57) and (4.58) are harmonic and satisfy the bottom boundary condi-
tion (2.1h). We note that, for sufficiently smooth φu and φ�, Eqs. (4.57) and (4.58) converge exponentially with
increasing N . If initial conditions are given at time t0 = 0:

φu(x, 0, 0) = f1(x), ψ(x,−hu, 0) = f2(x), (4.59)

then, by satisfying the remaining boundary conditions, the unknown amplitudes An , Bn , and Cn are obtained as

An = f̃1n, (4.60a)

Bn = f̃2n + R f̃1n/ cosh(knhu)

cotanh knh� + R tanh knhu
, (4.60b)

Cn = Bn

tanh knh�
. (4.60c)

for n = 0,±1, . . . ,±N . In (4.60), f̃1n and f̃2n are, respectively, the n-th Fourier modal amplitudes of f1(x) and
f2(x). Once the boundary-value solution is obtained, the vertical velocities of the fluid on the free surface and
interface are obtained from (4.57) and (4.58):

φu,z(x, 0, t) =
N∑

n=−N

kn [An(t) tanh(knhu)+ Bn(t)] eikn x , (4.61a)

φu,z(x,−hu, t) =
N∑

n=−N

kn Bn(t)e
ikn x , (4.61b)

φ�,z(x,−hu, t) =
N∑

n=−N

knCn(t) tanh(knhu)e
ikn x . (4.61c)

To complete the evolution equations (4.56), if the source is located in the lower layer

φ̄u = 0, (4.62)

φ̄� = m0

2π
(log r1 + log r2) sinω0t, (4.63)

where

r2
1 = sin2

(
x − x0

2L/π

)
+ sinh2

(
z − z0

2L/π

)
, (4.64)

r2
2 = sin2

(
x − x0

2L/π

)
+ sinh2

(
z + 2hu + 2h� + z0

2L/π

)
, (4.65)

and if the source is located in the upper layer:

φ̄u = m0

2π
(log r1 + log r2) sinω0t, (4.66)

φ̄� = 0, (4.67)

where r1 is the same as in (4.64), and

r2
2 = sin2

(
x − x0

2L/π

)
+ sinh2

(
z + 2hu + z0

2L/π

)
. (4.68)

The time simulation of the initial-boundary-value problem consists of two main steps: (a) at each time t , given
the surface and interface elevations ηu(x, t) and η�(x, t), the surface potential and interfacial potentials φu(x, 0, t)
and ψ(x,−hu, t) = φ�(x,−hu, t)− Rφu(x,−hu, t); solve the boundary-value problems for φu and φ� and eval-
uate the surface and interfacial velocities φu,z(x, 0, t), φu,z(x,−hu, t) and φ�,z(x,−hu, t); and (b) integrate the
evolution equations (4.56) in time to obtain the new values of ηu(x, t +�t), η�(x, t +�t), φu(x, 0, t +�t) and
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Table 1 Maximum error of the vertical interface velocity of a linearized wave matching the elevation profile of a Stokes wave in a
two-layer fluid with ε= ka = 0.1, h�/hu = 1, and R = 0.95

N = 8 N = 16 N = 32

Err 0.28 × 10−2 0.65 × 10−5 0.54 × 10−12

x

x
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u
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η
η

*
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η

η
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Fig. 7 Direct simulation results for a free surface, and b interfacial, wave elevations for R = 0.2, F = 0.03, τ = 0.16, z0 = −0.02
and h = 0.5. The numerical parameters are N = 4,096, �t = 0.03, simulation time T f = 1,000. In this and following figures flow is
from right to left

ψ(x,−hu, t +�t), where�t is the time step. In the present work, a fourth-order Runge–Kutta integration scheme
(with global truncation error O((�t/T )4)) is used. The two steps (a–b) are repeated starting from initial values.

To check the correctness and accuracy of our numerical scheme, we use an exact linearized solution for a wave in
two fluid layers with a surface and interfacial wave elevations matching a Stokes wave solution [28]. Table 1 shows
the exponential convergence in interface vertical velocity (compared to exact values) of the numerical spectral
method with number of modes N .

4.2 Comparison with theory

The numerical scheme of course, provides an independent check of our analytic results in Sect. 3. For the numerical
solution, we consider the problem of Sect. 3 in a frame of reference moving with the disturbance (at x = 0) and
starting from quiescent initial conditions. The simulation is performed until steady state is reached in a finite portion
|x | < L̄/2 of the (periodic) computational domain whose length L is chosen to be sufficiently large so that the
solution within L̄ is unaffected. In practice, this can be achieved by applying a tapering filter for |x | > L f /2 where
L̄ < L f < L . With this treatment, the simulation can proceed for a long time for a fixed L̄ without increasing L .

Figure 7 shows the surface and interfacial elevation for a problem with R = 0.2, F = 0.032, τ = 0.16, z0 =
−0.02, and h = 0.5 after a simulation time of T f = 1,000. Note that the choice of z0 is for the convenience of illus-
trating the linear solution. In fact in the direct simulation m0 can be chosen small enough such that au,n 
 |z0|. The
computational parameters are: L = 100, L f = 75, N = 4,096, and �t = 0.03. With these parameters, the solution
has reached steady state for L̄ ≈ 65. For this set of parameters, τcr,� < τ < τcr,u , NW = 6 (four surface- and two
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Fig. 8 Comparison of
direct simulation (——)
with theoretical prediction
(- - -) in the near field of the
moving disturbance for
R = 0.2, F = 0.03,
τ = 0.16, z0 = −0.02,
h = 0.5. The numerical
parameters are N = 4,096,
�t = 0.03, and T f = 750
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u
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η
η
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internal-mode waves) and no internal-mode wave propagate ahead of the disturbance (the interface wave elevation
seen in front of the disturbance in Fig. 7b is associated with the k2 forward traveling surface-mode wave). In Fig. 7,
the magnitudes of au,n are greater than those of a�,n because of the (somewhat arbitrary) choice of z0 = −0.02.
Note also that the visually seen sudden change of water surface amplitude in this figure is because of two orders
of magnitude difference in the scale of x- and y-axes. With equal scales, water surface smoothly changes from one
regime to the other.

Figure 8 compares the surface elevation computed by direct simulation with theoretical results of Sect. 3. For
the analytical results, the principal value integrals in (3.32), (3.33) are evaluated using adaptive Lobatto quadrature.
The comparison is almost within graphical accuracy, with the numerics capturing both the small k2 wavenum-
ber wave train ahead of the source and the modulated wave train (containing the small k4 wavenumber and the
larger k1, k3 wavenumber components) behind. To compare the predictions for the far-field amplitudes, the direct
simulation results need to be processed for the constituent wave components. For a wavefield with Nc (expected)
wave components, the amplitudes and phases at x are obtained by sampling the numerical result at say Np > 2Nc

uniformly spaced points (�x apart) centered at x , and then solving for the 2Nc unknown amplitude and phases
by inverting an overdetermined linear algebraic system. The choice of �x and Np is important, and we generally
require kmax�x 
 1 and Npkmin�x � O(1) to capture respectively the shortest and longest waves.

Figures 9 and 10 show such a set of results obtained from the numerics for the conditions: (a) NW = 8: F = 0.032,
τ = 0.16, z0 = −0.02, h = 1 and R = 0.2; and (b) NW = 4: F = 0.128, τ = 0.32, z0 = −0.02, h = 1 and
R = 0.95, respectively. The numerical results are compared to the far-field theoretical predictions (tabulated in
Table 2). The simulation results and theoretical far-field amplitudes compare well for all the wave modes with the
comparison somewhat better for the higher wavenumber components, since there are more of these waves sampled
in the (finite) computational domain.

5 Conclusions

The linear problem of wave generation by a translating pulsating point source in a two-layer density-stratified fluid
is studied analytically and numerically. The problem is motivated by the possibility of observing/characterizing the
waves associated with ships and submarines in strong stratified waters that may be present, for example, in warm
littoral zones.

From the dispersion relation, it is shown that NW = 4, 6 or 8 waves can exist at the far-field of the disturbance
depending on the parameters associated with the disturbance (F , τ , z0) and the ocean body (R, h). The two- and
three-dimensional Green functions are obtained analytically by solving the respective boundary-value problem.
The Green functions give the entire wavefield and, of special interest, the far-field amplitudes associated with the
NW waves. These amplitudes depend qualitatively on the location of the disturbance (in the upper or lower fluid),
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Fig. 9 Comparison of numerical simulations results (——) for the far-field wave amplitudes with theoretical values (- - -) for R = 0.2,
F = 0.032, τ = 0.16, z0 = −0.02 and h = 0.5. The numerical parameters are N = 4,096, �t = 0.03, and T f = 1,000
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Fig. 10 Comparison of numerical simulations results (——) for the far-field wave amplitudes with theoretical values (- - -) for R = 0.95,
F = 0.128, τ = 0.32, z0 = −0.02 and h = 0.5. The numerical parameters are N = 4,096, �t = 0.03, and T f = 1,000

the Froude number F and dimensionless frequency of pulsation τ of the disturbance, and the density ratio R and
depth ratio h of the stratified layers. These dependencies are elucidated and discussed for R= 0.2 and 0.95, the latter
being typical of real oceans.

For direct simulation, a spectral-based numerical scheme is developed. The numerical scheme is capable of sim-
ulating the general problem involving one or more bodies moving/oscillating arbitrarily with time. The numerical
method, of course, also provides an independent check of the theoretical results, which we perform.
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Table 2 Theoretical values for the dimensionless wave-number (k), frequency (ω), and surface- and interface-mode wave amplitudes
au ,a� for (a) R = 0.2, h = 0.5, F = 0.032, τ = 0.16, z0 = −0.02; and (b) R = 0.95, F = 0.128, h = 0.5, τ = 0.32, z0 = −0.02

a b

n k ω au a� k ω au a�

1 31.2 5.00 0.447 0.000 – – – –
2 2.6 1.34 0.130 0.027 – – – –
3 63.5 7.13 0.198 0.000 19.2 3.92 0.325 0.001
4 1.4 −0.82 0.037 0.011 1.1 −0.72 0.075 0.035
5 11.6 2.49 0.004 0.037 – – – –
6 7.0 1.89 0.041 0.099 – – – –
7 46.9 5.00 0.000 0.000 5.1 0.31 0.001 0.055
8 2.0 −0.74 0.017 0.015 3.1 −0.22 0.001 0.067

The solution provided here together with Fourier superposition can be used to describe wave generation by a
general variable strength source translating in a two-layer density-stratified fluid. The closed form solutions pro-
vided here can further be integrated with numerical schemes such as the Boundary Element Method to offer an
efficient tool for a wave radiation/diffraction problem of general-shape finite bodies in layered fluids.

Acknowledgement This research is supported financially by grants from the Office of Naval Research.

Appendix: three-dimensional Green function

The three-dimensional Green function for a translating-oscillating source in a two-layer density-stratified fluid can
be obtained similarly to the two-dimensional case. The analysis is in fact somewhat simpler because the fundamental
singularity is no longer logarithmic. The final expressions for the three-dimensional Green function are given here.

For the source in the upper layer, we have

φu = 1

r4
+ 1

r5
+

π∫

−π

∞∫

0

(A cosh kz + B sinh kz) eik(x cos θ+y sin θ) dk dθ, (A.69)

φ� =
π∫

−π

∞∫

0

C cosh k(z + 1) eik(x cos θ+y sin θ) dk dθ. (A.70)

where r2
4 ≡ x2 + y2 + (z − z0)

2, r2
5 ≡ x2 + y2 + (z + 2h + z0)

2. The coefficients A, B and C are obtained as

X = α X̂

λ4 − (ω2
s + ω2

i )λ
2 + ω2

sω
2
i

, (A.71)

where X is either of A, B or C with

Â = −β λ4 − αk (−Rsl γ + cl cu β + Rsl suβ − slβ cu + sl Rβ cu) λ2

sl su R + cu cl

−α
2k2sl cu β (−1 + R)

sl su R + cu cl
, (A.72)

B̂ = (sl cu Rβ + β cl su − Rsl γ ) λ4

sl su R + cu cl
+ αkβ (sl cu R + cl su − sl su + sl su R) λ2

sl su R + cu cl

+α
2k2β sl su (−1 + R)

sl su R + cu cl
, (A.73)
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Ĉ = −R (
cu2β − cu γ − su2β

)
λ4

cu cl + sl su R − Rαk
(−su2β + cu2β + su γ

)
λ2

cu cl + sl su R , (A.74)

where

λ = 1 − Fk cos θ/τ, β = cosh k(z0 + h)

π exp(kh)
, γ = e−k(z0+h)

π
.

For the source in the lower layer, we have

φu =
π∫

−π

∞∫

0

(A cosh kz + B sinh kz) eik(x cos θ+y sin θ) dk dθ, (A.75)

φ� = 1

r4
+ 1

r6
+

π∫

−π

∞∫

0

C cosh k(z + 1) eik(x cos θ+y sin θ) dkdθ, (A.76)

where r2
6 ≡ x2 + y2 + (2 + z + z0)

2, and

Â = −αkλ2β (sl + cl)

sl su R + cl cu
, B̂ = − λ4β (sl + cl)

sl Rsu + cl cu
, (A.77)

Ĉ = β (su R − cu) λ4

sl su R + cl cu
− β αk (cu − su) λ2

sl su R + cl cu
− β α2k2su (R − 1)

sl su R + cl cu
, (A.78)

where

λ = 1 − Fk cos θ/τ, β = cosh k(z0 + 1)

π ek(1−h)
. (A.79)

The limiting case of deep layers is instructive. For brevity, we consider only the case with NW = 8 (τ < τcr,i ).
For the source in the upper layer:

φu = 1

r4
+ 1

r5
+ 2

π

π
2∫

0

∞∫

0

1

τ 4 cos4 θ
(A cosh kz + B sinh kz)

∑
q=1,2,5,6

aq

k − kq
eik(x cos θ+y sin θ) dkdθ

+ 2

π

π∫

π
2

∞∫

0

1

τ 4 cos4 θ
(A cosh kz + B sinh kz)

∑
q=3,4,7,8

aq

k − kq
eik(x cos θ+y sin θ) dkdθ, (A.80)

φ� = 2

π

π
2∫

0

∞∫

0

1

τ 4 cos4 θ
C cosh k(z + 1)

∑
q=1,2,5,6

aq

k − kq
eik(x cos θ+y sin θ) dkdθ

+ 2

π

π∫

π
2

∞∫

0

1

τ 4 cos4 θ
C cosh k(z + 1)

∑
q=3,4,7,8

aq

k − kq
eik(x cos θ+y sin θ) dkdθ, (A.81)

where

aq =
∏

j={1,2,5,6}−q

1

α3 · 1

kq − k j
for q = 1, 2, 5, 6, (A.82)

aq =
∏

j={3,4,7,8}−q

1

α3 · 1

kq − k j
for q = 3, 4, 7, 8. (A.83)
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For the source in the lower layer, the expressions for the deep layers Green function are:

φu = 2

π

π
2∫

0

∞∫

0

1

τ 4 cos4 θ
(A cosh kz + B sinh kz)

∑
q=1,2,5,6

aq

k − kq
eik(x cos θ+y sin θ) dk dθ

+ 2

π

π∫

π
2

∞∫

0

1

τ 4 cos4 θ
(A cosh kz + B sinh kz)

∑
q=3,4,7,8

aq

k − kq
eik(x cos θ+y sin θ) dk dθ, (A.84)

φ� = 1

r4
+ 1

r6
+ 2

π

π
2∫

0

∞∫

0

1

τ 4 cos4 θ
C cosh k(z + 1)

∑
q=1,2,5,6

aq

k − kq
eik(x cos θ+y sin θ) dk dθ,

+ 2

π

π∫

π
2

∞∫

0

1

τ 4 cos4 θ
C cosh k(z + 1)

∑
q=3,4,7,8

aq

k − kq
eik(x cos θ+y sin θ) dk dθ . (A.85)

While the two-dimensional Green function predicts waves with a constant amplitude at infinity, similar to the
homogeneous fluid case, amplitudes of waves of a three-dimensional source decay with the distance from the source.
Since the wave-number vector of the generated waves is a function of the polar angle (θ ) in the horizontal plane, the
surface/interfacial-wave pattern of a three-dimensional translating/oscillating source is much more complex than
those in two dimensions [8].
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